
Research on the Role of Abstraction in Computer Programming

Alexandre Lepage1, Lucie DeBlois1, Margarida Romero2
1 Université Laval, Canada

2 Université Nice Sophia Antipolis, France

Abstract

Nowadays, a growing number of schools are trying

to introduce computer programming into their learning

activities. It is presented as a mean of engagement

throughout the learning process. This research is an

ongoing attempt to better understand what

characterizes computer programming, considered as a

human activity, with a special focus on the role it may

or may not play in the development of abstraction. A

total of 19 subjects, each with a minimum of five years

of cumulated programming experience, have accepted

to take part in an individual 45-minute semi-structured

interview which includes three themes: their

background related to computer programming, their

perception on the cognitive and affective components

of this activity, and their perception on computer

programming lessons for everybody from childhood.

Here we propose a preliminary analysis of one of these

interviews. In the end this research will help clarifying

cognitive and affective components involved in

computer programming.

1. Computer programming

In the 1960’s, computer programming was mostly

defined following its relationship with computer

science. Hoare defined computer programming as an

“exact science in that all the properties of a program

and all the consequences of executing it in any given

environment can, in principle, be found out from the

text of the program itself by means of purely deductive

reasoning” [3].

Martin-Löf⁠ considers that programming is very

close to constructive mathematics. The existence of

any object – i.e. a computer program – must come

along with a mean of creating it [9]. Computer

programming is a way of creating objects. He also

made a clear distinction between low-level

programming languages such as assembly and high-

level programming languages such as Fortran, saying

that the shift from low-level to high-level programming

results in different ways of expressing thoughts in

code. High-level programming is a form of computer

programming closer to human thinking: “[a high-level

language is] a language in which the thought of the

programmer can be expressed without too much

distortion and understood by someone who knows very

little about the structure of the hardware, but does

know some English and mathematics” [9](p. 501).

Hoc, Green, Samurçay, and Gilmore suggested that

computer programs are more than just sets of

instructions written for a compiler and that they are

also “vehicles for expressing our own thought to

ourselves” [4](p. 42).

Weinberg defined primarily a computer program by

its ability to produce a correct output for a set of

possible inputs [16]. We consider computer

programming as a (co)creative activity in which the

analysis of the initial situation is performed before

engaging in an iterative approach of creative problem

solving requiring an amount of computer literacy [13].

Within this approach, we situate computer

programming as a social, cultural and technological

process which requires both specific knowledge and

transversal competencies to be deployed.

2. Computer programming concept in this

study

For this exploratory research aiming to identify the

participants' conceptions of computer programming,

we reject none of the previous definitions. However,

we find of critical importance to put some restrictions

to the scope of computer programming.

First, it must involve the expression of a form of

code. It may be by typing it on a keyboard, or by

assembling blocks (i.e. visual programming). Second,

computer programming requires a computer or an

electronic device sufficiently advanced to allow the

interpretation or compilation of code. Unplugged

computer science activities, even if they may surely

find their place in the learning process, are not

considered as computer programming because they do

not involve the constraints given by a machine. Finally,

computer programming must involve the expression of

Canada International Conference on Education (CICE-2018)

Copyright © CICE-2018 Published by Infonomics Society ISBN: 978-1-908320-90-2 164

code in a way that delays its execution or conditions its

output. Following these two last criteria, turning on a

light with a switch is not considered as computer

programming because the result of the action is

immediate. However, writing a line of code that turns a

light on 10 seconds later would be considered as

computer programming (event if at the edge).

3. From computer programming to

computational thinking

Computational thinking is a concept brought by

Wing [17]. To her the core of computational thinking is

abstraction. She developed the idea by advocating that

a computer scientist is someone who must handle

multiple layers of abstraction simultaneously [18]. This

paper has been widely referred to, and computational

thinking is a concept used in many researches.

However there is no consensus on what are the

boundaries of such a competency [14]⁠. For some it is

strictly restricted to algorithmic skills whereas others

include in computational thinking components such as

analysis, design thinking, and metacognition

[5][6][13].

4. Computer programming and abstraction

Abstraction is to Piaget a major component of what

he called formal reasoning. His first work considered

formal reasoning as the ability to build hypothesis and

develop thinking upon possibilities that are not

immediately linked to objects from the physical

environment [12]. It is also related to the conceptual

thinking of Vygotsky [15]. Even if both theories are

close on the nature of reasoning, they partially agree on

the way it is acquired. For Piaget, it is acquired through

interaction between a subject and various objects upon

which the subject builds abstraction whereas for

Vygotsky it also relies on the social context.

Papert came to consider computer programming as

something not only formal saying that it may relies on

both abstract and concrete thinking [10]. Current

researches tend to go in the same way. In a study about

copy and paste practices, Kim, Bergman, Lau, and

Notkin⁠ found out that programmers tend to work in a

very concrete way in some contexts (i.e. creating a new

class by copying a previous one that does about the

same thing and then trying to adapt it to fit the new

case – instead of doing an analysis before starting to

write a new code) [7]. Some of their participants have

said that the process of programming acts as a

companion throughout the formal analysis task that the

programmer must accomplish. Some of them have

stated that they discover the appropriate level of

abstraction as they program [7]. Moreover, to be more

efficient, some programmers tend to avoid whenever

possible to develop a formal understanding of the code

they are working on [8]. To understand the process of

debugging, Pea, Soloway and Spohrer found that trials

and errors are a widely used strategy by programmers

[11]. Such findings tend to confirm the idea of Papert

that programming is not only a cognitive activity. We

could hypothesis that these trials and errors are related

to socio-affective components. But then the question

seems to remain open: what is computer programming?

This project aims at better understanding the nature

of computer programming by investigating the

potential competency development that may occur

when practicing it. The research question is about the

boundaries of such a competency and the possibility of

it to be deployed in contexts other than those involving

computer programming, with a focus on the role of

abstraction in it. The research question goes as follow:

what could be the boundaries of a competency trained

through computer programming? Based on our

researches, we came to classify these boundaries under

three categories. The first is about the cognitive work

involved in computer programming. Under this theme

will fit anything related to abstraction, mathematics,

logical thinking, algorithmic, and problem solving. The

second category is about emotional or social

involvements of computer programming. That may

comprise anything related to professional relationships,

artistic aspect of code, or self-motivation. Finally, the

third category is about the different contexts in which

computer programming occurs. To explore these

boundaries, we asked computer programmers how they

perceive their competencies by conducting semi-

structured interviews.

5. Method

This study consisted in interviews with experienced

programmers. Here we detail who were the

participants, what was the procedure, and how is the

analysis performed.

5.1 Participants

Nineteen participants were recruited through the

mailing list of Université Laval in Quebec City (both

from the students list and the employees list). All of

them were over 18 years of age and cumulated at least

five years of experience in computer programming.

Canada International Conference on Education (CICE-2018)

Copyright © CICE-2018 Published by Infonomics Society ISBN: 978-1-908320-90-2 165

5.2 Procedure

Participants were asked to participate in an audio-

recorded 45-minute semi-structured interview. Then,

interviews have been transcribed.

The interview is built upon three themes. The first

theme is about the background in computer

programming with three subquestions where

participants are asked about (1) their first steps in

computer programming, (2) their motivations to do

computer programming – and changes in time, if any –,

and (3) the nature of what they do (or have done) with

a technical perspective (ie. programming languages

they use). The first theme is mostly an open discussion

in which the participant describes his background. As

the discussion goes on, the interviewer asks

clarification when required, and tries to propose

synthesis of the participant speech to validate the

mutual understanding of the speech.

The respective roles of the participant and the

interviewer are about the same in the second and third

themes, but in these cases the participant is asked to

react to statements proposed by the interviewer. The

participant cannot see statements in advance. All the

participants receive statements in the same order. The

procedure goes as follow: the interviewer reads the

statement, gives a printed version to the participant,

and then the participant starts discussing about it. He

may or may not agree with the entire statement, may or

may not choose to divide the statement to react to parts

of it. Statements were selected prior to the interviews

and organized with the intention to bring the

participant to clarify his speech by anticipating

possible contradiction based on existing literature. For

example, in the second theme, the first statement is

“Everybody can do computer programming”. The third

statement goes as follow: “It takes some intellectual

capacities of analyze to be a good programmer. One

must not be afraid of mathematics and logic, and be

ready to face frustrations. Not everybody has these

skills or has the patience required to developed them,

so computer programming is not for everybody.”. Both

statements are trying to investigate the same generic

idea about the ability of anybody to program. But in an

exploratory perspective, the first statement provides the

participant with the chance to bring by himself any

nuance he wants as he is free of influences. The third

statement may or may not fit his speech about the first

statement, but in any case, it brings the participant to

clarify his thinking and thus provide the interviewer

with a richer understanding of the participant’s speech.

5.3 Analysis

At this stage the analysis is still going on. We will

present in this paper the qualitative analysis of the first

participant to show the kind of information it may

bring and how we intend to relate it to the research

question. The qualitative analysis is performed through

the software QDA Miner.

6. Preliminary analysis

We propose the descriptive analysis of the first

participant through five major ideas from the three

categories presented earlier: contexts for computer

programming, cognitive work, and socio-affective

components. Because the interview was conducted in

French, every quote from the participant’s speech was

translated to English for this paper.

6.1. Contexts in which computer programming

occurs

6.1.1 First contact with computer programming.

Participant #1 started programming in the late 1970's

while he was between 16 and 18 years old. His first

memory of computer programming involved a TRS-80

computer that he described as follow: "It was a TRS-

80... color... 4K of memory... it was in VC,

programming language, with small tapes on which we

saved... That was the technology of that time, and then

I had a computer with 256K of RAM, 2 floppy drives 5

¼, it was... worthed $3000 in 1994..." (from

participant #1). He related a TV channel on which it

was possible to play games like the hangman game. He

remembered having created a hangman game using the

TRS-80 for his mother and other games for his friends.

These experiences were rewarding to him: "It was

more for my friends than for me! My fun was really to

program and I enjoyed seeing others using my... it was

self-rewarding to see others using my programs"

(participant #1). It was his first reason for

programming. He also related as a reason to program

the fun he had to control an automat: "Hey, I can also

enter lines of code to make a system react, an automat,

it's amazing" (participant #1). The participant then

completed a bachelor's degree in computer science in

which he discovered analysis, which will be discussed

later.

6.1.2 Computer programming for everybody from

elementary school. The participant agrees on the idea

of introducing computer programming in elementary

school in order to allow everybody to explore and be

aware of that field: "In first grade [the child] may not

Canada International Conference on Education (CICE-2018)

Copyright © CICE-2018 Published by Infonomics Society ISBN: 978-1-908320-90-2 166

understand all the consequences of not doing computer

programming but at least to make them understand that

it exists, it may open more doors if they are aware of

it" (participant #1). The participant supported this idea

not only for career-related purposes, but also for

personal development purposes. He says that computer

programming may empower a person to act on its

environment: "Because programming gives a certain

control over tools. So if you are provided with a tool

and you like it, you can spend your life without

programming. But if you are aware of computer

programming, someday you can say 'yes, I could

change that tool by myself to better fit my needs"

(participant #1). The participant said that even if

everybody is capable of computer programming, it

may happen that some people do not perceive

themselves as so: "Again I repeat what I said earlier,

we build ourselves a universe, and so if someone

thinks 'I am not capable of being a programmer', if he

his convinced of that, I couldn't change him"

(participant #1).

In conclusion, these results about the context in

which computer programming occurs suggest the

following boundary: the context in which

programming is done must allow to experience with

the control of an automat and must empower the

programmer over its environment.

6.2. Cognitive work

6.2.1. Abstraction. Participant #1 related that

abstraction is necessary in many ways in computer

programming. He often related the need for abstraction

when exchanging with a customer while specifying

that the term customer is not be exclusively understood

as a business customer. It may be understood as

"somebody else" (participant #1). Even though the

participant referred to it as abstraction, we consider it

more like an object of communication than a real

abstraction. These objects of communication acts as

tools to allow a mutual understanding between this

customer and the programmer: "It gives a level at

which you can exchange with the customer"

(participant #1). This abstraction built upon the needs

for communication does not exist when programming

for yourself according to the participant.

The participant recognizes that the term abstraction

may have a particular meaning in computer

programming, and he named object-oriented

programming. He gave as example the modeling of an

object: "A student comes to ask help: what do you need

to know about him? Oh, all his email addresses, his

phone numbers. So when you design an entity 'Person'

with properties requested by the person, you design a

universe like so" (participant #1). The participant

related that the levels of abstraction used to create that

universe of objects are essential to perceive some

relations between objects: "There is a level of

abstraction that you must develop. The more you

understand relations, that your object inherits another,

so the more you can organize your universe. You win

on the long term" (participant #1). Participant #1 said

that he was not capable of that level of abstraction

when he started computer programming.

We retain of his conception of abstraction that

abstraction is a cognitive process with two purposes in

computer programming: developing a mutual

understanding between the programmer and somebody

else, and helping the construction of an object like a

complex computer program. These complex programs

involve the manipulation of relations between entities

that only appear on upper abstractions of these entities.

6.2.2. Analysis and programming. The words of

participant #1 about abstraction were related to the

ones he had about analysis in computer science. To

him, computer programming and analysis are two

separate tasks. He gave as examples some places where

he worked in which these two tasks were distinct: "It

happens often that I will be the analyst and I won't

program at all, I will do all the plans, the design, I will

work with a designer for user interfaces, we will give it

to the programmer and... he programs... so yes, the

programmer has a certain flexibility, he can invent stuff

but he must not go out of the universe that we built... or

if he wants to, he must ask us before, because he often

does not have the global view with all other systems

because yes we want to let him... we want to involve

him in the creation but..." (participant #1). Through

these words the participant opened the door to an

imperfect frontier between programming and analysis,

while stating that they are two separate tasks. He

related having filled the two roles simultaneously in

some occasions. He gave as example a personal

experience where he had to do analysis, programming

and project management.

In conclusion, these results about the cognitive

work suggest the following boundary: computer

programming may be a way mean of creating objects

used for communication between people who may or

may not be programmers.

6.3. Socio-affective category

6.3.1 Trial and error. Participant #1 recognized a

place for trial and error in computer programming. He

said that analysis is sometimes less efficient than trial

and error depending on the problem to solve: "But I

agree that trial and error, if it is faster. Sometimes we

get lost in analysis while... you could do only two or

Canada International Conference on Education (CICE-2018)

Copyright © CICE-2018 Published by Infonomics Society ISBN: 978-1-908320-90-2 167

three quick tests and the problem is solved. I

completely agree on that" (participant #1). The

participant draws a comparison between trial and error

in computer programming and woodworking. He gave

the example of a carpenter who wants to build a table,

saying that he would not spend a long time doing the

plan. He admitted having used bricolage (by an

approximate translation we define it as a set of

concrete methods sometimes used by amateurs but not

only, for example collapsing two programs together to

make one, approximate a value instead of thinking to a

formula, ...) when he started computer programming

and then discovered analysis. It appeared to him as a

way to put a distance between himself and his

programs: "Yes, when I build a system for somebody

else, if I bricole [use concrete methods], for sure I

would become part of the system like in the expression

“having an arm stucked in the machine”, and they will

have to keep me because it won't be a solution

independant from the person who made it" (participant

#1).

In conclusion, these results about the socio-affective

category suggest the following boundary: the analysis

task may be used consciously by a programmer to

distance him from his creation. It causes the

programmer to develop a confidence about the place of

computer programming in society.

7. Discussion

The analysis of the first interview makes us

confident that the different themes give place to a

meaningful discussion about the research question that

goes as follow: what could be the boundaries of a

competency trained through computer programming?

Existing literature brought us to focus on the role of

abstraction to answer the question, but also to consider

the socio-affective components or the contexts in

which programming occurs.

Participant #1's speech offered a view on the

influence of contexts. In these various contexts,

programming seems to be a way for him to act

consciously on its environment. In that it may be an

empowering mean of action. The participant gave

examples from both his personal life and professional

life. That leads us to think that programming is more

than a career. Some properties of programming seem to

be specific to certain contexts and in that it may be

appropriate to go further in the distinction we make

between professional and personal programming. For

example, in a professional setting, the participant had

sometimes completely different roles in the

organization. Sometimes these roles were really close

to his personal interests; sometimes they were more

distant from his personal interests. The engagement

was so depending from the context in which computer

programming is performed. That difference in personal

engagement may be better explained by motivational

theories.

The speech of Participant #1 about cognitive work

involved in computer programming shows a

consciousness of how and when abstraction is

performed. Abstraction appears sometimes as a choice,

suggesting that it is one of the many strategies that may

be deployed to solve a problem. In addition, the

participant said that he developed new capacities of

abstraction when at university, years after his first

contact with computer programming. In addition, the

pleasure of creating an object to use as a mean of

communication is related with the work of Douady in

mathematics education about the process of

mathematic concept as an object or a tool [2]. These

ideas make us consider that more investigation is

required to understand the role of abstraction in

computer programming. It suggests that abstraction is

maybe not the only component at the core of a

competency developped by computer programming as

stated by Wing [18]. It could be more related with the

socio-affective category.

The words of participant #1 about trial and error

tend to fit the ideas of Papert about concrete methods

[10] and other findings about the role of analysis in

computer programming [7][11].

We summarize the position of the participant about

computer programming from elementary school by

saying that he is in favor of it in an exploratory

perspective. He also underlined the importance of the

self-perception of an individual to explain the capacity

or incapacity to do computer programming.

8. Conclusion

The preliminary analysis of one participant brought

some ideas that may contribute to answer the research

question. The research question was about the

boundaries of a competency trained through computer

programming. We divided our analysis in three

categories: contexts for computer programming,

cognitive work, and socio-affective components. It

opens a frame of analysis for computer programming

that is not only based on the immediate task of writing

code. Results suggest that the task of programming and

the way it is performed is influenced by the creativity

of the programmer and his relationship with

knowledge [1]. By investigating the socio-affective

components and the contexts for computer

programming in addition to the cognitive work, we

think we may offer a wider view of what is computer

Canada International Conference on Education (CICE-2018)

Copyright © CICE-2018 Published by Infonomics Society ISBN: 978-1-908320-90-2 168

programming today and how it may be integrated in

schools.

9. References

[1] Charlot, B. (2003). “La problématique du rapport

au savoir” In Rapport au savoir et didactiques, S.

Maury & M. Caillot (eds), Éditions Fabert, Paris, 2003,

pp. 33-50.

[2] Douady, R. “Jeux de cadre et dialectique outil-objet

dans l'enseignement des mathématiques - une

réalisation dans tout le cursus primaire”, Thèse d'État,

Université Paris 7, 1984.

[3] Hoare, C. A. R. “An axiomatic basis for computer

programming”. Communications of the ACM, 12(10),

https://doi.org/10.1145/363235.363259, 1969, pp.

576–580.

[4] Hoc, J.-M., Green, T. R. G., Samurçay, R., &

Gilmore, J. D. Psychology of Programming, Academic

Press Inc., San Diego, 1990.

[5] Howland, K., Good, J., & Nicholson, K. “Concrete

Thoughts on Abstraction”, Psychology of

Programming Workshop (PPIG 2009), 2009, pp. 715–

728.

[6] Ioannidou, A., Bennett, V., Repenning, A., Koh, K.

H., & Basawapatna, A. "Computational Thinking

Patterns”, 2011 Annual Meeting of the American

Educational Research Association (AERA), 2,

https://doi.org/10.1098/rsta.2008.0118, 2011.

[7] Kim, M., Bergman, L., Lau, T., & Notkin, D. “An

ethnographic study of copy and paste programming

practices in OOPL”, Proceedings of the 2004

International Symposium on Empirical Software

Engineering, https://doi.org/10.1109/ISESE.2004.

1334896, 2004, pp. 83-92.

[8] Maalej, W., Tiarks, R., Roehm, T., & Koschke, R.

“On the Comprehension of Program Comprehension”,

ACM Transactions on Software Engineering and

Methodology, 23(4), https://doi.org/10.1145/2622669,

2014, pp. 31:1-31:38.

[9] Martin-Lof, P., & Lozinski, Z. A. “Constructive

Mathematics and Computer Programming”,

Philosophical Transactions of the Royal Society of

London. Series A, Mathematical and Physical

Sciences, 312(1522),

https://doi.org/10.1098/rsta.2005.1579, 1984, pp. 501–

518.

[10] Papert, S. (1992). The Children’s Machine.

BasicBooks, New York, 1992.

[11] Pea, R. D., Soloway, E., & Spohrer, J. C. “The

buggy path to the development of programming

expertise”, Focus on Learning Problems in

Mathematics, 9(1), 1987, pp. 5–30.

[12] Piaget, J. La psychologie de l’intelligence.

http://dx.doi.org/10.4324/9780203278895, 1947.

[13] Romero, M., Lepage, A., & Lille, B.

“Computational thinking development through creative

programming in higher education”, International

Journal of Educational Technology in Higher

Education, 14(1). https://doi.org/10.1186/s41239-017-

0080-z, 2017.

[14] Voogt, J., Fisser, P., Good, J., Mishra, P., & Yadav,

A. “Computational thinking in compulsory education:

Towards an agenda for research and practice”,

Education and Information Technologies, 20,

https://doi.org/10.1007/s10639-015-9412-6, 2015, pp.

715–728.

[15] Vygotsky, L. Thought and Language, The MIT

Press, Cambridge, 1986.

[16] Weinberg, G. M. “What makes a good program?”

In The Psychology of Computer Programming, Dorset

House Publishing, New York, 1998, pp. 15–26.

[17] Wing, J. M. Computational Thinking.

Communications of the ACM, 49(3),

https://doi.org/10.1145/1118178.1118215, 2006, pp.

33–35.

[18] Wing, J. M. “Computational thinking and thinking

about computing”, Philosophical Transactions of the

Royal Society A – Mathematical Physical and

Engineering Sciences, 366(July), https://doi.org/

10.1098/rsta.2008.0118, 2008, pp. 3717–3725.

Canada International Conference on Education (CICE-2018)

Copyright © CICE-2018 Published by Infonomics Society ISBN: 978-1-908320-90-2 169

